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a b s t r a c t 

The partially observable hidden Markov model is an extension of the hidden Markov Model in which the 

hidden state is conditioned on an independent Markov chain. This structure is motivated by the presence 

of discrete metadata, such as an event type, that may partially reveal the hidden state but itself emanates 

from a separate process. Such a scenario is encountered in keystroke dynamics whereby a user’s typing 

behavior is dependent on the text that is typed. Under the assumption that the user can be in either an 

active or passive state of typing, the keyboard key names are event types that partially reveal the hidden 

state due to the presence of relatively longer time intervals between words and sentences than between 

letters of a word. Using five public datasets, the proposed model is shown to consistently outperform 

other anomaly detectors, including the standard HMM, in biometric identification and verification tasks 

and is generally preferred over the HMM in a Monte Carlo goodness of fit test. 

Published by Elsevier Ltd. 
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. Introduction 

The hidden Markov model (HMM), which dates back over 50

ears [1] , has seen numerous applications in the recognition of

uman behavior, such as speech [2] , gesture [3] , and handwriting

4] . Recent successes have leveraged the expressive power of con-

ectionist models by combining the HMM with feed-forward deep

eural networks, which are used to estimate emission probabilities

5–7] . Despite the increasing interest in sequential deep learning

echniques, e.g., recurrent neural networks, HMMs remain tried-

nd-true for time series analyses. The popularity and endurance

f the HMM can be at least partially attributed to the tractability

f core problems (parameter estimation and likelihood calculation),

bility to be combined with other methods, and the level of insight

t provides to the data. 

At least part its success can also be attributed to its flexibility,

ith many HMM variants having been developed for specific appli-

ations. This usually involves introducing a dependence, whether

t be on time [8] , previous observations [9] , or a semantic con-

ext [10] . The motivation for doing so is often to better reflect the

tructure of the underlying problem. Although many of these vari-
∗ Corresponding author. 

E-mail address: john.v.monaco2.civ@mail.mil (J.V. Monaco). 

URL: http://www.vmonaco.com (J.V. Monaco) 

[  

g  

t  

t

 

m  

ttps://doi.org/10.1016/j.patcog.2017.11.021 

031-3203/Published by Elsevier Ltd. 
tions have increased complexity and number of parameters over

he standard HMM, their estimation remains tractable. 

In this work, we introduce the partially observable hidden

arkov model (POHMM), an extension of the HMM intended for

eystroke dynamics. We are interested in modeling the temporal

ehavior of a user typing on a keyboard, and note that certain key-

oard keys are thought to influence typing speed. Non-letter keys,

uch as punctuation and the Space key, indicate a greater proba-

ility of being in a passive state of typing, as opposed to an active

tate, since the typist often pauses between words and sentences

s opposed to between letters in a word [11] . The POHMM reflects

his scenario by introducing a dependency on the key names which

re observed alongside the time intervals, and in this way, the keys

rovide a context for the time intervals. 

The idea of introducing a context upon which some behavior

epends is not new. Often, an observation depends not only on a

atent variable but on the observations that preceded it. For ex-

mple, the neighboring elements in a protein secondary structure

an provide context for the element under consideration, which

s thought to depend on both the previous element and a hidden

tate [9] ; nearby phonemes can aid in the recognition of phonemes

12] ; and the recognition of human activities can be achieved with

reater accuracy by considering both a spatial context (e.g., where

he activity occurred) and temporal context (e.g., the duration of

he activity) [13] . 

Handwriting recognition has generally seen increased perfor-

ance with models that consider the surrounding context of a

https://doi.org/10.1016/j.patcog.2017.11.021
http://www.ScienceDirect.com
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handwritten character. The rationale for such an approach is that a

character may be written with different style or strokes depending

on its neighboring characters in the sequence. Under this assump-

tion, the neighboring pixels or feature vectors of neighboring char-

acters can provide additional context for the character under con-

sideration. Alternatively, a separate model can be trained for each

context in which the character appears, e.g., “t” followed by “e”

versus “t” followed by “h” [10] . This same principle motivates the

development of the POHMM, with the difference being that the

context is provided not by the observations themselves, but by a

separate sequence. 

We apply the POHMM to address the problems of user

identification, verification, and continuous verification, leveraging

keystroke dynamics as a behavioral biometric. Each of these prob-

lems requires estimating the POHMM parameters for each individ-

ual user. Identification is performed with the maximum a poste-

riori (MAP) approach, choosing the model with maximum a pos-

terior probability; verification, a binary classification problem, is

achieved by using the model log-likelihood as a biometric score;

and continuous verification is achieved by accumulating the scores

within a sliding window over the sequence. Evaluated on five pub-

lic datasets, the proposed model is shown to consistently out-

perform other leading anomaly detectors, including the standard

HMM, in biometric identification and verification tasks and is gen-

erally preferred over the HMM in a Monte Carlo goodness of fit

test. 

All of the core HMM problems remain tractable for the POHMM,

including parameter estimation, hidden state prediction, and like-

lihood calculation. However, the dependency on event types intro-

duces many more parameters to the POHMM than its HMM coun-

terpart. Therefore, we address the problem of parameter smooth-

ing, which acts as a kind of regularization and avoids overfit-

ting [14] . In doing so, we derive explicit marginal distributions,

with event type marginalized out, and demonstrate the equiva-

lence between the marginalized POHMM and the standard HMM.

The marginal distributions conveniently act as a kind of backoff, or

fallback, mechanism in case of missing data, a technique rooted in

linguistics [15] . 

The rest of this article is organized as follows. Section 2 briefly

describes keystroke dynamics as a behavioral biometric.

Section 3 introduces the POHMM, followed by a simulation

study in Section 4 and a case study of the POHMM applied to

keystroke dynamics in Section 5 . Section 6 reviews previous

modeling efforts for latent processes with partial observability and

contains a discussion. Finally, Section 7 concludes the article. The

POHMM is implemented in the pohmm Python package and source

code is publicly available. 1 

2. Keystroke dynamics 

Keystroke dynamics refers to the way a person types. Promi-

nently, this includes the timings of key press and release events,

where each keystroke is comprised of a press time t n and a du-

ration d n . The time interval between key presses, τn = t n − t n −1 , is

of interest. Compared to random time intervals (RTIs) in which a

user presses only a single key [16] , key press time intervals occur

between different keys and are thought to be dependent on key

distance [11] . A user’s keystroke dynamics is also thought to be

relatively unique to the user, which enable biometric applications,

such as user identification and verification [17] . 

As a behavioral biometric, keystroke dynamics enables low-cost

and non-intrusive user identification and verification. Keystroke

dynamics-based verification can be deployed remotely, often as
1 Available at https://github.com/vmonaco/pohmm and through PyPI. 

t  

r

P  
 second factor to username-password verification. Some of the

ame attributes that make keystroke dynamics attractive as a be-

avioral biometric also present privacy concerns [18] , as there exist

umerous methods of detecting keystrokes without running soft-

are on the victim’s computer. Recently, it has been demonstrated

hat keystrokes can be detected through a wide range of modali-

ies including motion [19] , acoustics [20] , network traffic [21] , and

ven WiFi signal distortion [22] . 

Due to the keyboard being one of the primary human-computer

nterfaces, it is also natural to consider keystroke dynamics as a

odality for continuous verification in which a verification decision

s made upon each key pressed throughout a session [23] . Contin-

ous verification holds the promise of greater security, as users are

erified continuously throughout a session beyond the initial login,

hich is considered a form of static verification . Being a sequential

odel, the POHMM is straightforward to use for continuous verifi-

ation in addition to identification and static verification. 

Keystroke time intervals emanate from a combination of physi-

logy (e.g., age, gender, and handedness [24] ), motor behavior (e.g.,

yping skill [11] ), and higher-level cognitive processes [25] , high-

ighting the difficulty in capturing a user’s typing behavior in a

uccinct model. Typing behavior generally evolves over time, with

ighly-practiced sequences able to be typed much quicker [26] . In

iometrics, this is referred to as template aging . A user’s keystroke

ynamics is also generally dependent on the typing task. For exam-

le, the time intervals observed during password entry are much

ifferent than those observed during email composition. 

. Partially observable hidden Markov model 

The POHMM is intended for applications in which a sequence

f event types provides context for an observed sequence of time

ntervals . This reasoning extends to activities other than keystroke

ynamics, such as email, in which a user might be more likely to

ake an extended break after sending an email instead of receiving

n email, and programming, in which a user may fix bugs quicker

han making feature additions. The events types form an inde-

endent Markov chain and are observed alongside the sequence

f time intervals. This is in contrast to HMM variants where the

eighboring observations themselves provide a context, such as

he adjacent characters in a handwritten segment [10] . Instead, the

vent types are independent of the dynamics of the model. 

With this structure, a distinction can be made between user

ehavior and task : the time intervals comprise the behavior , and

he sequence of event types, (e.g., the keys pressed) comprise the

ask. While the time intervals reflect how the user behaves, the se-

uence of events characterize what the user is doing. This distinc-

ion is appropriate for keystroke dynamics, in which the aim is to

apture typing behavior but not the text itself which may be more

ppropriately modeled by linguistic analysis. Alternatively, in case

he user transcribes a sequence, such as in typing a password, the

ask is clearly defined, i.e. the user is instructed to type a particular

equence of characters. The POHMM aims to capture the temporal

ehavior, which depends on the task. 

.1. Description 

The HMM is a finite-state model in which observed values at

ime t depend on an underlying latent process [2] . At the n th time

tep t n , a feature vector x n is emitted and the system can be in

ny one of M hidden states, z n . Let x N 1 be the sequence of observed

mission vectors and z N 
1 

the sequence of hidden states, where N is

he total number of observations. The basic HMM is defined by the

ecurrence relation, 

 

(
x 

n +1 
1 , z n +1 

1 

)
= P ( x 

n 
1 , z 

n 
1 ) P ( x n +1 | z n +1 ) P ( z n +1 | z n ) . (1)

https://github.com/vmonaco/pohmm
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Fig. 1. Partially observable hidden Markov model structure. Observed values (emis- 

sion and event type) are shown in gray, hidden values (system state) are shown in 

white. 
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Fig. 2. POHMM event types index a much larger state space. In this example, there 

are two hidden states and three event types. Given observed event type b at time 

1, the system must be in one of the hidden states {1 b , 2 b }. The a observed at the 

next time step limits the possible transitions from {1 b , 2 b } to {1 a , 2 a }. 

 

r  

e  

s  

t  

t  

b  

r  

t  

M  

e

p  

g

 

o  

s  

r  

t  

e  

a  

T  

t  

b  

c  

e

 

t  

s  

p  

t  

P  

i  

m  

t  

m  

t  

(  

g  

i  

p  

p

2 When a transition is involved, i and ψ always refer to the hidden state and 

event type, respectively, before the transition; j and ω refer to those after the tran- 

sition. 
he POHMM is an extension of the HMM in which the hidden state

nd emission depend on an observed independent Markov chain.

tarting with the HMM axiom in Eq. (1) , the POHMM is derived

hrough following assumptions: 

1. An independent Markov chain of event types is given, denoted

by �N 
1 

. 

2. The emission x n +1 depends on event type �n +1 in addition to

z n +1 . 

3. The hidden state z n +1 depends on �n and �n +1 in addition to

z n . 

Applying the above assumptions to the HMM axiom,

he conditional emission probability P ( x n +1 | z n +1 ) becomes

 ( x n +1 | z n +1 , �n +1 ) ; the conditional hidden state probability

 ( z n +1 | z n ) becomes P ( z n +1 | z n , �n , �n +1 ) ; and the recurrence

elation still holds. The complete POHMM axiom is given by the

ormula, 

 

(
x 

n +1 
1 , z n +1 

1 

)
= P ( x 

n 
1 , z 

n 
1 ) P ( x n +1 | z n +1 , �n +1 ) P ( z n +1 | z n , �n , �n +1 ) 

(2) 

here �n and �n +1 are the observed event types at times t n and

 n +1 . The POHMM structure is shown in Fig. 1 . 

The event types come from a finite alphabet of size m . Thus,

hile the HMM has M hidden states, a POHMM with m event

ypes has M hidden states per event type, for a total of m × M

nique hidden states. 

The event type can be viewed as a partial indexing to a much

arger state space. Each observed event type restricts the model to

 particular subset of M hidden states with differing probabilities

f being in each hidden state, hence the partial observability. The

OHMM starting and emission probabilities can be viewed as an

MM for each event type, and the POHMM transition probabilities

s an HMM for each pair of event types. 

To illustrate this concept, consider a POHMM with two hidden

tates and three event types, where �3 
1 

= [ b, a, c ] . At each time

tep, the observed event type limits the system to hidden states

hat have been conditioned on that event type, as demonstrated

n Fig. 2 . Beginning at time 1, given observed event type �1 = b,

he system must be in one of the hidden states {1 b , 2 b }. Event

ype �2 = a observed at time 2 then restricts the possible transi-

ions from {1 b , 2 b } to {1 a , 2 a }. Generally, given any event type, the

OHMM must be in one of M hidden states conditioned on that

vent type. Section 3.6 deals with situations where the event type

s missing or has not been previously observed in which case the

arginal distributions (with the event type marginalized out) are

sed. 
The POHMM parameters are derived from the HMM. Model pa-

ameters include π [ j | ω], the probability of starting in state j given

vent type ω, and a [ i, j | ψ , ω], the probability of transitioning from

tate i to state j , given event types ψ and ω before and after

he transition, respectively 2 . Let f ( · ; b [ j | ω]) be the emission dis-

ribution that depends on hidden state j and event type ω, where

 [ j | ω] parametrizes density function f ( · ). The complete set of pa-

ameters is denoted by θ = { π, a, b } , where a is the m 

2 M 

2 transi-

ion matrix. While the total number of parameters in the HMM is

 + M 

2 + MK, where K is the number of free parameters in the

mission distribution, the POHMM contains mM + m 

2 M 

2 + mMK

arameters. After accounting for normalization constraints, the de-

rees of freedom ( dof ) is m ( M − 1 ) + m 

2 M ( M − 1 ) + mMK. 

Marginal distributions, in which the event type is marginalized

ut, are also defined. Let π [ j ] and f ( · ; b [ j ]) be the marginalized

tarting and emission probabilities, respectively. Similarly, the pa-

ameters a [ i, j | ω], a [ i, j | ψ], and a [ i, j ] are defined as the transi-

ion probabilities after marginalizing out the first, second, and both

vent types, respectively. The POHMM marginal distributions are ex-

ctly equal to the corresponding HMM that ignores the event types .

his ensures that the POHMM is no worse than the HMM in case

he event types provide little or no information as to the process

eing modeled. Computation of POHMM marginal distributions is

overed in Section 3.6 and simulation results demonstrating this

quivalence are in Section 4 . 

It may seem that POHMM parameter estimation becomes in-

ractable, as the number of possible transitions between hidden

tates increases by a factor of m 

2 over the HMM and all other

arameters by a factor of m . In fact, all of the algorithms used for

he POHMM are natural extensions of those used for the HMM : the

OHMM parameters and variables are adapted from the HMM by

ntroducing the dependence on event types, and parameter esti-

ation and likelihood calculation follow the same basic deriva-

ions as those for the HMM. POHMM parameter estimation re-

ains linearly bounded in the number of observations, similar to

he HMM, performed through a modification of the Baum–Welch

BW) algorithm. The convergence property of the modified BW al-

orithm is demonstrated analytically in Section 3.4 and empirically

n Section 4 . The rest of this section addresses the three main

roblems of the POHMM, taken analogously as the three main

roblems of the HMM: 
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1. Determine P (x N 
1 
| �N 

1 
, θ ) , the likelihood of an emission sequence

given the model parameters and the observed event types. 

2. Determine z N 
1 
, the maximum likelihood sequence of hidden

states, given the emissions x N 
1 

and event types �N 
1 

. 

3. Determine arg max θ∈ � P (x N 1 | �N 
1 , θ ) , the maximum likelihood

parameters θ for observed emission sequence x N 
1 
, given the

event type sequence. 

The first and third problems are necessary for identifying and

verifying users in biometric applications, while the second prob-

lem is useful for understanding user behavior. The rest of this sec-

tion reviews the solutions to each of these problems and other

aspects of parameter estimation, including parameter initialization

and smoothing. 

3.2. Model likelihood 

Since we assume �N 
1 

is given, it does not have a prior distri-

bution. Therefore, we consider only the likelihood of an emission

sequence given the model parameters θ and the observed event

type sequence �N 
1 
, denoted by P (x N 

1 
| �N 

1 
) , 3 leaving the joint model

likelihood P (x N 
1 
, �N 

1 
) as an item for future work. 

In the HMM, P (x N 1 ) can be computed efficiently by the forward

procedure which defines a recurrence beginning at the start of the

sequence. This procedure differs slightly for the POHMM due to the

dependence on event types. Notably, the starting, transition, and

emission parameters are all conditioned on the given event type. 

Let αn [ z n , �n ] ≡ P 
(
x n 

1 
, z n | �n 

)
, i.e., the joint probability of emis-

sion subsequence x n 
1 

and hidden state z n , given event type �n .

Then, by the POHMM axiom ( Eq. (2) ), αn [ z n , �n ] can be computed

recursively by the formula, 

αn +1 [ z n +1 , �n +1 ] = P ( x n +1 | z n +1 , �n +1 ) 

×
∑ 

z n 

P ( z n +1 | z n , �n , �n +1 ) αn [ z n , �n ] (3)

α1 [ z 1 , �1 ] = P ( x 1 | z 1 , �1 ) P ( z 1 | �1 ) (4)

where Eq. (4) provides the initial condition. The modified forward

algorithm is obtained by substituting the model parameters into

Eqs. (3) and (4) , where 

π [ j| ω ] ≡ P ( z 1 = j| �1 = ω ) (5)

f (x n ; b [ j, ω ] ) ≡ P ( x n | z n = j, �n = ω ) (6)

a [ i, j| ψ, ω ] ≡ P ( z n +1 = j| z n = i, �n = ψ, �n +1 = ω ) (7)

and αn [ j, ω] is the sequence obtained after substituting the model

parameters. The model likelihood is easily computed upon termi-

nation, since P (x N 1 | �N 
1 ) = 

∑ M 

j=1 αN [ j, ω ] where ω = �N . 

A modified backward procedure is similarly defined through a

backwards recurrence. Let βn [ z n , �n ] ≡ P 
(
x N 

n +1 
| z n , �n 

)
. Then under

the POHMM axiom, 

βn [ z n , �n ] = 

∑ 

z n +1 

P ( x n +1 | z n +1 , �n +1 ) 

×P ( z n +1 | z n , �n , �n +1 ) βn +1 [ z n +1 , �n +1 ] 

(8)

βN [ z N , �N ] = 1 . (9)
3 For brevity, the dependence on θ is implied, writing P(x N 1 | �N 
1 , θ ) as P(x N 1 | �N 

1 ) . 

b  

i  

u

here βn [ j, ω] is the sequence obtained after making the same

ubstitutions. 

Note that at each n, αn [ j, ω] and βn [ j, ω] need only be com-

uted for the observed ω = �n , i.e., we don’t care about event

ypes ω � = �n . Therefore, only the hidden states (and not the event

ypes) are enumerated in Eqs. (3) and (8) at each time step. Like

he HMM, the modified forward and backward algorithms have

ime complexity O ( M 

2 N ) and can be stored in a N × M matrix. 

.3. Hidden state prediction 

The maximum likelihood sequence of hidden states is efficiently

omputed using the event type-dependent forward and backward

ariables defined above. First, let the POHMM forward-backward

ariable γn [ z n , �n ] ≡ P 
(
z n | �n , x 

N 
1 

)
, i.e., the posterior probability of

idden state z n , given event type �n and the emission sequence

 

N 
1 . Let γ n [ j, ω] be the estimate obtained using the model param-

ters, making the same substitutions as above. Then γ n [ j, ω] is

traightforward to compute using the forward and backward vari-

bles, given by 

n [ j, ω ] = 

αn [ j| ω ] βn [ j| ω ] 

P (x 

N 
1 
| �N 

1 
) 

= 

αn [ j| ω ] βn [ j| ω ] ∑ M 

i =1 αn [ i | ω ] βn [ i | ω ] 
(10)

here ω = �n . The sequence of maximum likelihood hidden states

s taken as, 

 n = arg max 1 ≤ j≤M 

γn [ j, ω ] . (11)

imilar to αn [ j | ω] and βn [ j | ω], γ n [ j, ω] can be stored in a N × M

atrix and takes O ( M 

2 N ) time to compute. This is due to the fact

hat the event types are not enumerated at each step; the depen-

ency on the event type propagates all the way to the re-estimated

arameters, defined below. 

.4. Parameter estimation 

Parameter estimation is performed iteratively, updating the

tarting, transition, and emission parameters using the current

odel parameters and observed sequences. In each iteration of

he modified Baum–Welch algorithm, summarized in Algorithm 1 ,

lgorithm 1 Modified Baum–Welch for POHMM parameter esti-

ation. 

1. Initialization 

Choose initial parameters θo and let θ ← θo . 

2. Expectation 

Use θ , x N 1 , �
N 
1 tocompute αn [ j| ω ] , βn [ j| ω ] ,γn [ j, ω ] , ξn [ i, j| ψ, ω ] .

3. Maximization 

Update θ using the re-estimation formulae (Eqs. 12, 14, 15) to

get ˙ θ = 

{
˙ π, ˙ a , ˙ b 

}
. 

4. Regularization 

Calculate marginal distributions and apply parameter smooth-

ingformulae. 

5. Termination 

If ln P 
(
x N 

1 
| �N 

1 
, ˙ θ

)
− ln P 

(
x N 

1 
| �N 

1 
, θ

)
< ε,stop; else let θ ← 

˙ θ and

go to step 2. 

he model parameters are re-estimated using the POHMM forward,

ackward, and forward-backward variables. Parameters are set to

nitial values before the first iteration, and convergence is reached

pon a loglikelihood increase of less than ε. 
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.4.1. Starting parameters 

Using the modified forward-backward variable given by

q. (10) , the re-estimated POHMM starting probabilities are ob-

ained directly by 

˙ [ j| ω ] = γ1 [ j| ω ] (12) 

here ω = �1 and re-estimated parameters are denoted by a dot.

enerally, it may not be possible to estimate ˙ π [ j| ω ] for many ω 

ue to there only being one �1 (or several �1 for multiple obser-

ation sequences). Parameter smoothing, introduced in Section 3.7 ,

ddresses this issue of missing and infrequent observations. 

.4.2. Transition parameters 

In contrast to the HMM, which has M 

2 transition probabilities,

here are m 

2 M 

2 unique transition probabilities in the POHMM. Let

n [ z n , z n +1 | �n , �n +1 ] ≡ P 
(
z n +1 | z n , �n , �n +1 , x 

N 
1 

)
, i.e., the probabil-

ty of transitioning from state z n to z n +1 , given event types �n and

n +1 as well as the emission sequence. Substituting the forward

nd backward variable estimates based on model parameters, this

ecomes ξ n [ i, j | ψ , ω], given by 

n [ i, j| ψ, ω ] = 

αn [ i, ω ] a [ i, j| ψ, ω ] f ( x n +1 ; b [ j| ω ] ) βn [ j| ω ] 

P (x 

N 
1 
| �N 

1 
) 

. (13) 

or 1 ≤ n ≤ N − 1 , ψ = �n and ω = �n +1 . The updated transition

arameters are then calculated by 

˙ 
 [ i, j| ψ, ω ] = 

∑ N−1 
n =1 ξn [ i, j| ψ, ω ] δ( ψ, �n ) δ( ω, �n +1 ) ∑ N−1 

n =1 γn [ i | ψ ] δ( ψ, �n ) δ( ω, �n +1 ) 
(14) 

here δ( ω, �n ) = 1 if ω = �n and 0 otherwise. Note that

˙  [ i, j| ψ, ω ] depends only on the transitions between event types ψ 

nd ω in �N 
1 
, i.e., where �n = ψ and �n +1 = ω, as the summand

n the numerator equals 0 otherwise. As a result, the updated tran-

ition probabilities can be computed in O ( M 

2 N ) time, the same as

he HMM, despite there being m 

2 M 

2 unique transitions. 

.4.3. Emission parameters 

For each hidden state and event type, the emission distribution

arameters are re-estimated through the optimization problem, 

˙ 
 [ j| ω ] = arg max 

b ∈B 

N ∑ 

n =1 

γn [ j| ω ] ln f ( x n ; b ) δ( ω, �n ) . (15) 

losed-form expressions exist for a variety of emission distribu-

ions. In this work, we use the log-normal density for time inter-

als. The log-normal has previously been demonstrated as a strong

andidate for modeling keystroke time intervals, which resemble a

eavy-tailed distribution [27] . The log-normal density is given by

f (x ;η, ρ) = 

1 

xρ
√ 

2 π
exp 

[
−( ln x − η) 

2 

2 ρ2 

]
(16) 

here η and ρ are the log-mean and log-standard deviation, re-

pectively. The emission parameter re-estimates are given by 

˙ [ j| ω ] = 

∑ N 
n =1 γn [ j| ω ] ln τn δ( ω, �n ) ∑ N 

n =1 γn [ j| ω ] δ( ψ, �n ) 
(17) 

nd 

˙ 2 [ j| ω ] = 

∑ N 
n =1 γn [ j| ω ] ( ln τn − ˙ η j| ω ) 2 δ( ω, �n ) ∑ N 

n =1 γn [ j| ω ] δ( ψ, �n ) 
(18) 

or hidden state j , given event type ω. Note that the estimates for

˙ [ j| ω ] and ˙ ρ[ j| ω ] depend only on the elements of γ n [ j | ω] where

n = ω. 
.4.4. Convergence properties 

The modified Baum-Welch algorithm for POHMM parameter es-

imation ( Algorithm 1 ) relies on the principles of expectation max-

mization (EM) and is guaranteed to converge to a local maxi-

um. The re-estimation formula ( Eqs. (12) , (14) , and (15) ) are de-

ived from inserting the model parameters from two successive

terations, θ and 

˙ θ, into Baum’s auxiliary function, Q 

(
θ, ˙ θ

)
, and

aximizing Q 

(
θ, ˙ θ

)
with respect to the updated parameters. Con-

ergence properties are evaluated empirically in Section 4 , and

ppendix B contains a proof of convergence, which follows that

f the HMM. 

.5. Parameter initialization 

Parameter estimation begins with parameter initialization,

hich plays an important role in the BW algorithm and may ul-

imately determine the quality of the estimated model since EM

uarantees only locally maximum likelihood estimates. This work

ses an observation-based parameter initialization procedure that

nsures reproducible parameter estimates, as opposed to random

nitialization. The starting and transition probabilities are simply

nitialized as 

[ j| ω ] = 

1 

M 

(19) 

 [ i, j| ψ, ω ] = 

1 

M 

(20) 

or all i, j, ψ , and ω. This reflects maximum entropy, i.e., uniform

istribution, in the absence of any starting or transition priors. 

Next, the emission distribution parameters are initialized. The

trategy proposed here is to initialize parameters in such a way

hat there is a correspondence between hidden states from two

ifferent models. That is, for any two models with M = 2 , hidden

tate j = 1 corresponds to the active state and j = 2 corresponds

o the passive state. Using a log-normal emission distribution, this

s accomplished by spreading the log-mean initial parameters. Let

[ ω ] = 

∑ N 
n =1 ln x n δ( ω, �n ) ∑ N 

n =1 δ( ω, �n ) 
(21) 

nd 

2 [ ω ] = 

∑ N 
n =1 ( ln x n − η[ ω ] ) 2 δ( ω, �n ) ∑ N 

n =1 δ( ω, �n ) 
(22) 

e the observed log-mean and log-variance for event type ω. The

odel parameters are then initialized as 

[ j| ω ] = η[ ω ] + 

(
2 h ( j − 1 ) 

M − 1 

− h 

)
ρ[ ω ] (23) 

nd 

2 [ j| ω ] = ρ2 [ ω ] (24) 

or 1 ≤ j ≤ M , where h is a bandwidth parameter. Using h = 2 , initial

tates are spread over the interval [ η[ ω ] − 2 ρ[ ω ] , η[ ω ] + 2 ρ[ ω ] ] ,

.e., 2 log-standard deviations around the log-mean. This ensures

hat j = 1 corresponds to the state with the smaller log-mean, i.e.,

he active state. 

.6. Marginal distributions 

When computing the likelihood of a novel sequence, it is possi-

le that some event types were not encountered during parameter

stimation. This situation arises when event types correspond to

ey names of freely-typed text and novel key sequences are ob-

erved during testing. A fallback mechanism (sometimes referred
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to as a “backoff” model) is typically employed to handle missing

or sparse data, such as that used linguistics [15] . In order for the

POHMM to handle missing or novel event types during likelihood

calculation, the marginal distributions are used. This creates a two-

level fallback hierarchy in which missing or novel event types fall

back to the distribution in which the event type is marginalized

out. 

Note also that while we assume �N 
1 is given (i.e., has no prior),

the individual �n do have a prior defined by their occurrence in

�N 
1 

. It is this feature that enables the event type to be marginal-

ized out to obtain the equivalent HMM. Let the probability of event

type ω at time t 1 be π [ ω], and the probability of transitioning

from event type ψ to ω be denoted by a [ ψ , ω]. Both can be com-

puted directly from the event type sequence �N 
1 , which is assumed

to be a first-order Markov chain. The marginal π [ j ] is the probabil-

ity of starting in hidden state j in which the event type has been

marginalized out, 

π [ j ] = 

∑ 

ω∈ �
π [ j| ω ] π [ ω ] (25)

where � is the set of unique event types in �N 
1 

. 

Marginal transition probabilities are also be defined. Let a [ i,

j | ψ] be the probability of transitioning from hidden state i to hid-

den state j , given event type ψ while in hidden state i . The second

event type for hidden state j has been marginalized out. This prob-

ability is given by 

a [ i, j| ψ ] = 

∑ 

ω∈ �
a [ i, j| ψ, ω ] a [ ψ, ω ] . (26)

The marginal probability a [ i, j | ω] is defined similarly by 

a [ i, j| ω ] = 

∑ 

ψ∈ � a [ i, j| ψ, ω ] a [ ψ, ω ] ∑ 

ψ∈ � a [ ψ, ω ] 
. (27)

Finally, the marginal a [ i, j ] is the probability of transitioning from i

to j , 

a [ i, j ] = 

1 

m 

∑ 

ψ∈ �

∑ 

ω∈ �
a [ i, j| ψ, ω ] a [ ψ, ω ] . (28)

No denominator is needed in Eq. (26) since the normalization con-

straints of both transition matrices carry over to the left-hand side.

Eq. (28) is normalized by 1 
m 

since 
∑ 

ψ∈ �
∑ 

ω∈ � a [ ψ, ω ] = m . 

The marginal emission distribution is a convex combination of

the emission distributions conditioned on each of the event types.

For normal and log-normal emissions, the marginal emission is

simply a mixture of normals or log-normals, respectively. Let η[ j ]

and ρ2 [ j ] be the log-mean and log-variance of the marginal dis-

tribution for hidden state j . The marginal log-mean is a weighted

sum of the conditional distributions, given by 

η[ j ] = 

∑ 

ω∈ �
�[ ω ] μ[ j| ω ] (29)

where �[ ω] is the stationary probability of event type ω. This can

be calculated directly from the event type sequence �N 
1 
, 

�[ ω ] = 

1 

N 

N ∑ 

n =1 

δ( ω, �n ) . (30)

Similarly, the marginal log-variance is a mixture of log-normals

given by 

ρ2 [ j ] = 

∑ 

ω∈ �
�[ ω ] 

[
( η[ j| ω ] − η[ j ] ) 

2 + ρ2 [ j| ω ] 
]

. (31)

Marginalized distribution parameters for normal emission is ex-

actly the same. 
.7. Parameter smoothing 

HMMs with many hidden states (and parametric models in gen-

ral) are plagued by overfitting and poor generalization, especially

hen the sample size is small. This has to due with there being

 high dof in the model compared to the number of observations.

revious attempts at HMM parameter smoothing have pushed the

mission and transition parameters towards a higher entropy dis-

ribution [14] or borrowed the shape of the emission PDF from

tates that appear in a similar context [12] . Instead, our parameter

moothing approach uses the marginal distributions, which can be

stimated with higher confidence due to there being more obser-

ations, to eliminate the sparseness in the event type-dependent

arameters. Note that parameter smoothing goes hand-in-hand

ith context-dependent models, at least in part due to the curse

f dimensionality which is introduced by the context dependence

12] . 

The purpose of parameter smoothing is twofold. First, it acts as

 kind of regularization to avoid overfitting, a problem often en-

ountered when there is a large number of parameters and small

umber of observations. Second, parameter smoothing provides su-

erior estimates in case of missing or infrequent data. For motiva-

ion, consider a keystroke sequence of length N . Including English

etters and the Space key, there are at most 27 unique keys and

29 unique digrams (subsequences of length 2). Most of these will

arely, or never, be observed in a sequence of English text. Parame-

er smoothing addresses this issue by re-estimating the parameters

hat depend on low-frequency observations using a mixture of the

arginal distribution. The effect is to bias parameters that depend

n event types with low frequency toward the marginals, for which

here exist more observations and higher confidence, while param-

ters that depend on event types with high frequency will remain

nchanged. 

Smoothing weights for the starting and emission parameters

re defined as 

 ω = 1 − 1 

1 + f ( ω ) 
(32)

here f (ω) = 

∑ N 
t=1 δ( ω, �n ) is the frequency of event type ω

n the sequence �N 
1 . The POHMM starting probabilities are then

moothed by 

˜ [ j| ω ] = w ω π [ j| ω ] + ( 1 − w ω ) π [ j ] (33)

here smoothed parameter estimates are denoted by a tilde, and

mission parameters are smoothed by 

˜ 
 [ j| ω ] = w ω b [ j| ω ] + ( 1 − w ω ) b [ j ] . (34)

s N increases, event type frequencies increase and the effect

f parameter smoothing is diminished, while parameters condi-

ioned on infrequent or missing event types are biased toward

he marginal. This ensures that the conditional parameters remain

symptotically unbiased as N → ∞ . 

The smoothing weights for transition probabilities follow sim-

lar formulae. Let f ( ψ, ω ) = 

∑ N−1 
t=1 δ( ψ, �n ) δ( ω, �n +1 ) , i.e., the

requency of event type ψ followed by ω in the sequence �N 
1 .

eights for the conditional and marginal transition probabilities

re defined as 

w ψ 

= 

1 

f ( ψ, ω ) + f ( ω ) 

w ω = 

1 

f ( ψ, ω ) + f ( ψ ) 

 ψ,ω = 1 −
(
w ψ 

+ w ω 

)
w = 0 (35)
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here w ψ,ω + w ψ 

+ w ω + w = 1 . The smoothed transition matrix

s given by 

˜ 
 [ i, j| ψ, ω ] = w ψ,ω a [ i, j| ψ, ω ] + w ψ 

a [ i, j| ψ ] + w ω a [ i, j| ω ] 

+ wa [ i, j ] . (36) 

n this strategy, the weight for the marginal a [ i, j ] is 0, although in

ther weighting schemes, w could be non-zero. 

. Simulation study 

It is important for statistical models and their implementations

o be consistent. This requires that parameter estimation be both

onvergent and asymptotically unbiased. The POHMM algorithms

nclude the parameter estimation procedure and equations, and

he implementation consists of the POHMM algorithms expressed

n a programming language. While consistency of the POHMM al-

orithms is theoretically guaranteed (proof in Appendix B ), con-

istency of the POHMM implementation under several differ-

nt scenarios is validated in this section using computational

ethods. 

First, a model is initialized with parameters θ o . From this

odel, S samples are generated, each containing N time intervals.

or each sample, the best-estimate parameters ˆ θ are computed us-

ng the modified BW algorithm ( Algorithm 1 ). Let ˆ θN be the param-

ters determined by the modified BW algorithm for an observed

equence of length N generated from a POHMM with true param-

ters θ o . Consistency requires that 

lim 

→∞ 

| ̂  θN − θo | 
max ˆ θ | ̂  θN − θo | 

= 0 (37) 

nsensitive to the choice of θ o . As N increases, parameter estima-

ion should be able to recover the true model parameters from the

bserved data. Four different scenarios are considered: 

1. Train a POHMM (without smoothing) on POHMM-generated

data. 

2. Train a POHMM (with smoothing) on POHMM-generated data. 

3. Train a POHMM (without smoothing) using emissions gener-

ated from an HMM and random event types. 

4. Train an HMM using emissions from a POHMM (ignore event

types). 

Convergence is theoretically guaranteed for scenarios 1 and

. The first scenario tests the POHMM implementation with-

ut parameter smoothing and should yield unbiased estimates.

cenario 2 evaluates the POHMM implementation with pa-

ameter smoothing, whose effect diminishes as N increases.

onsequently, the smoothed POHMM estimates approach that

f the unsmoothed POHMM, and results should also indicate

onsistency. 

Scenario 3 is a POHMM trained on an HMM, and scenario 4

s an HMM trained on a POHMM. In scenario 3, the underlying

rocess is an HMM with the same number of hidden states as the

OHMM, and the observed event types are completely decorrelated

rom the HMM. As a result, the event types do not partially reveal

he hidden state. In this case, the POHMM marginal distributions,

n which the event type is marginalized out, should converge to

he HMM. Finally, scenario 4 simply demonstrates the inability of

he HMM to capture the dependence on event types, and results

hould indicate biased estimates. 

For scenarios 1, 2 and 4, a POHMM with 3 event types and 2

idden states is initialized to generate the training data. The emis-

ion distribution is a univariate Gaussian with parameters chosen

o be comparable to human key-press time intervals, and transition

robabilities are uniformly distributed. The emission and event

ype sequences are sampled from the POHMM and used to fit the
odel. In scenario 3, an HMM generates the emission sequence x N 
1 
,

nd the event type sequence �N 
1 is chosen randomly from the set

f 3 event types, reflecting no dependence on event types. In this

ase, only the POHMM marginal distribution parameter residuals

re evaluated, as these should approximate the underlying HMM.

or each value of N in each scenario, 400 length- N samples are

enerated and used to train the corresponding model. 

Fig. 3 a contains the mean studentized residuals for emission

arameters of each model, and Fig. 3 b shows the hidden state

lassification accuracies (where chance accuracy is 1 
2 N 

). Both the

nsmoothed and smoothed POHMM residuals tend toward 0 as

 increases, indicating consistency. The marginal residuals for the

OHMM with random event types also appear unbiased, an in-

ication that the POHMM marginals, in which the event type is

arginalized out, are asymptotically equivalent to the HMM. Fi-

ally, the HMM residuals, when trained on data generated from

 POHMM, appear biased as expected when the event types are

gnored. Similar results in all scenarios are seen for the transition

robability residuals (not shown), and we confirmed that these re-

ults are insensitive to the choice of θ o . 

. Case study: Keystroke dynamics 

Five publicly-available keystroke datasets are analyzed in this

ork, summarized in Table 1 . We categorize the input type as fol-

ows: 

• Fixed-text : The keystrokes exactly follow a relatively short pre-

defined sequence, e.g., passwords and phone numbers. 
• Constrained-text : The keystrokes roughly follow a predefined

sequence, e.g., case-insensitive passphrases and transcriptions.

Some massively open online course (MOOC) providers require

the student to copy several sentences for the purpose of

keystroke dynamics-based verification [28] . 
• Free-text : The keystrokes do not follow a predefined sequence,

e.g., responding to an open-ended question in an online exam. 

The password, keypad , and mobile datasets contain short fixed-

ext input in which all the users in each dataset typed the same

0-character string followed by the Enter key: “.tie5Roanl” for the

assword dataset [29] and “9141937761” for the keypad [30] and

obile datasets [31] . Samples that contained errors or more than

1 keystrokes were discarded. The password dataset was collected

n a laptop keyboard equipped with a high-resolution clock (esti-

ated resolution to within ± 200 μs [32] ), while the timestamps

n all other datasets were recorded with millisecond resolution.

he keypad dataset used only the 10-digit numeric keypad located

n the right side a standard desktop keyboard, and the mobile

ataset used an Android touchscreen keypad with similar layout. In

ddition to timestamps, the mobile dataset contains accelerometer,

yroscope, screen location, and pressure sensor features measured

n each key press and release. 

The fable dataset contains long constrained-text input from

0 users who each copied 4 different fables or nursery rhymes

33,34] . Since mistakes were permitted, the keystrokes for each

opy task varied, unlike the short fixed-text datasets above. The

ssay dataset contains long free-text input from 55 users who each

nswered 6 essay-style questions as part of a class exercise [34] .

oth the fable and essay datasets were collected on standard desk-

op and laptop keyboards. For this work, the fable samples were

runcated to each contain exactly 100 keystrokes and the essay

amples to each contain exactly 500 keystrokes. 

Each keystroke event contains two timing features, 

n = t P n − t P n −1 (38) 

 n = t R n − t P n (39) 
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Fig. 3. Simulation study results. In 1 and 2, a POHMM is trained on data generated from a POHMM; in 3, a POHMM is trained on data generated from an HMM (using 

random event types); in 4, an HMM is trained on data generated from a POHMM (ignoring event types). 

Table 1 

Keystroke dataset summary. Columns 4–7 indicate: number of users, samples per user, keystrokes 

per sample, and τ̄= mean press-press latency (ms). 

Dataset Source Category Users Samples/user Keys/sample τ̄ (ms) 

Password [29] Short fixed 51 400 11 249 

Keypad [30] Short fixed 30 20 11 376 

Mobile [31] Short fixed 51 20 11 366 

Fable [33] Long constrained 60 4 100 264 

Essay [34] Long free 55 6 500 284 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. POHMM marginal distributions showing a separation between active and 

passive typing states. The marginal distributions are mixtures of log-normals condi- 

tioned on the key names. Histograms show the empirical time interval distributions 

in each hidden state. 
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where t P n and t R n are the press and release timestamps of the n th

keystroke, respectively; τ n is the press-press time interval and d n 
is the key-hold duration. Note that other timing features, such as

release-release and release-press intervals, can be calculated by a

linear combination of the above two features. 

Each user’s keystroke dynamics are modeled by a POHMM with

log-normal emission and two hidden states, all conditioned on the

keyboard keys as the observed event types. A two-state model is

the simplest model of non-homogeneous behavior, as one state im-

plies a sequence of independent and identically distributed (i.i.d.)

observations. The two hidden states correspond to the active and

passive states of the user, in which relatively longer time intervals

are observed in the passive state. Given the hidden state and the

observed event type, the keystroke time intervals τ n and d n are

each modeled by a log-normal distribution ( Eq. (16) ), where η[ j | ω ]

and ρ[ j | ω] are the log-mean and log-standard deviation, respec-

tively, in hidden state j given observed key ω. 

The POHMM parameters are determined using Algorithm 1 , and

convergence is achieved after a loglikelihood increase less than

10 −6 or 10 0 0 iterations, whichever is reached first. As an exam-

ple, the marginal key-press time interval distributions for each hid-

den state are shown in Fig. 4 for two randomly selected samples.

The passive state in the free-text model has a heavier tail than the

fixed-text, while the active state distributions in both models are

comparable. The rest of this section presents experimental results

for a goodness of fit test, identification, verification, and continu-

ous verification. Source code to reproduce the experiments in this

article is available. 4 

5.1. Goodness of fit 

To determine whether the POHMM is consistent with observed

data, a Monte Carlo goodness of fit test is performed. The test pro-
4 Code to reproduce experiments: https://github.com/vmonaco/ 

pohmm-keystroke . 

w  

e  

m  

p  
eeds as follows. For each keystroke sample (using the key-press

ime intervals only), the model parameters ˆ θm 

are determined. The

rea test statistic between the model and empirical distribution is

hen taken. The area test statistic is a compromise between the

olmogorov–Smirnov (KS) test and Cramér–von Mises test [35] , 

 = 

∫ 
| P D (τ ) − P M 

(
τ | ̂  θm 

)
| d τ (40)

here P D is the empirical cumulative distribution and P M 

is the

odel cumulative distribution. The POHMM marginal emission

ensity is given by 

 ( x ; θ ) = 

∑ 

ω∈ �

M ∑ 

j=1 

�[ ω ] �[ j ] f ( x ; b [ j| ω ] ) (41)

here �[ j ] is the stationary probability of hidden state j and �[ ω]

s the stationary probability of event type ω. Using the fitted model

ith parameters ˆ θm 

, a surrogate data sample the same size as the

mpirical sample is generated. Estimated parameters ˆ θs are deter-

ined using the surrogate sample in a similar fashion as the em-

irical sample. The area test statistic between the surrogate-data-

https://github.com/vmonaco/pohmm-keystroke
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Fig. 5. Keystroke goodness of fit p-value distributions testing the null hypothesis 

that the model is consistent with the data. Proportions of rejected samples at the 

0.05 significance level are shown in parentheses. If the null hypothesis was true, 

i.e., the model was actually consistent with the keystroke data, then p-values would 

follow a uniform distribution shown by the dashed black line. 
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rained model and surrogate data is computed, given by A s . This

rocess repeats until enough surrogate statistics have accumulated

o reliably determine P (| A s − 〈 A s 〉| > | A − 〈 A s 〉| ) . The biased p-value

s given by 

I ( | A s − 〈 A s 〉| > | A − 〈 A s 〉| ) + 1 

S + 1 

(42) 

here I ( · ) is the indicator function. Testing the null hypothesis,

hat the model is consistent with the data, requires fitting S + 1

odels (1 empirical and S surrogate samples). 

The test is performed for both the HMM and the POHMM for

ach user in the fable and essay datasets, using the key-press time

ntervals only. The resulting p-value distributions are shown in

ig. 5 . The shaded area represents a 0.05 significance level in which

he null hypothesis is rejected. In the fable dataset, the HMM is

ejected for 45% of users, while the POHMM is rejected for 22% of

sers. The HMM is rejected for 100% of users in the essay dataset,

nd the POHMM is rejected for 40% of users. If the POHMM truly

eflected typing behavior (i.e., the null hypothesis was actually

rue), the p-values would follow a uniform distribution shown by

he dashed black line. In both experiments, the POHMM is largely

referred over the HMM. 

.2. Identification and verification 

We use the POHMM to perform both user identification and

erification, and compare the results to other leading methods.

dentification, a multiclass classification problem, is performed by

he MAP approach in which the model with maximum a poste-

ior probability is chosen as the class label. This approach is typ-

cal in using a generative model to perform classification. Better

erformance could, perhaps, be achieved through parameter esti-

ation with a discriminative criterion [36] , or a hybrid discrimi-

ative/generative model in which the POHMM parameters provide

eatures for a discriminative classifier [37] . Verification, a binary

lassification problem, is achieved by comparing the claimed user’s

odel loglikelihood to a threshold. 

Identification and verification results are obtained for each

eystroke dataset and four benchmark anomaly detectors in addi-

ion to the POHMM. The password dataset uses a validation pro-

edure similar to Killourhy and Maxion [29] , except only samples

rom the 4th session (repetitions 150–200) are used for training

nd sessions 5–8 (repetitions 201–400) for testing. For the other

atasets, results are obtained through a stratified cross-fold vali-

ation procedure with the number of folds equal to the number

f samples per user: 20 for keypad and mobile, 4 for fable, and 6
or essay. In each fold, one sample from each user is retained as a

uery and the remaining samples are used for training. 

Identification accuracy (ACC) is measured by the proportion

f correctly classified query samples. Verification performance is

easured by the user-dependent equal error rate (EER), the point

n the receiver operating characteristic (ROC) curve at which the

alse rejection rate (FRR) and false acceptance rate (FAR) are equal.

ach query sample is compared against every model in the pop-

lation, only one of which will be genuine. The resulting loglike-

ihood is normalized using the minimum and maximum loglikeli-

oods from every model in the population to obtain a normalized

core between 0 and 1. Confidence intervals for both the ACC and

ER are obtained over users in each dataset, similar to [29] . 

Benchmark anomaly detectors include Manhattan distance,

caled Manhattan distance, one-class support vector machine

SVM), and a two-state HMM. The Manhattan, scaled Manhattan,

nd one-class SVM operate on fixed-length feature vectors, un-

ike the HMM and POHMM. Timing feature vectors for the pass-

ord, keypad, and mobile datasets are formed by the 11 press-

ress latencies and 10 durations of each 11-keystroke sample for

 total of 21 timing features. The mobile sensors provide an ad-

itional 10 features for each keystroke event for a total of 131

eatures. For each event, the sensor features include: acceleration

meters/second 

2 ) and rotation (radians/second) along three orthog-

nal axes (6 features), screen coordinates (2 features), pressure (1

eature), and the length of the major axis of an ellipse fit to the

ointing device (1 feature). Feature vectors for the fable and es-

ay datasets are each comprised of a set of 218 descriptive statis-

ics for various keystroke timings. Such timing features include the

ample mean and standard deviation of various sets of key dura-

ions, e.g., consonants, and latency between sets of keys, e.g., from

onsonants to vowels. For a complete list of features see [33,38] .

he feature extraction also includes a rigorous outlier removal step

hat excludes observations outside a specified confidence interval

nd a hierarchical fallback scheme that accounts for missing or in-

requent observations. 

The Manhattan anomaly detector uses the negative Manhattan

istance to the mean template vector as a confidence score. For the

caled Manhattan detector, features are first scaled by the mean

bsolute deviation over the entire dataset. This differs slightly from

he scaled Manhattan in [29] , which uses the mean absolute devi-

tion of each user template. The global (over the entire dataset)

ean absolute deviation is used in this work due to the low num-

er of samples per user in some datasets. The one-class SVM uses

 radial basis function (RBF) kernel and 0.5 tolerance of training er-

ors, i.e., half the samples will become support vectors. The HMM

s exactly the same as the POHMM (two hidden states and log-

ormal emissions), except event types are ignored. 

Identification and verification results are shown in Tables 2 and

 , respectively, and ROC curves are shown in Fig. 6 . The best-

erforming anomaly detectors in Tables 2 and 3 are shown in bold.

he set of best-performing detectors contains those that are not

ignificantly worse than the POHMM, which achieves the high-

st performance in every experiment. The Wilcoxon signed-rank

est is used to determine whether a detector is significantly worse

han the best detector, testing the null hypothesis that a detec-

or has the same performance as the POHMM. A Bonferroni cor-

ection is applied to control the family-wise error rate, i.e., the

robability of falsely rejecting a detector that is actually in the set

f best-performing detectors [39] . At a 0.05 significance level, the

ull hypothesis is rejected with a p-value not greater than 

0 . 05 
4 

ince four tests are applied in each row. The POHMM achieves

he highest identification accuracy and lowest equal error rate for

ach dataset. For 3 out of 6 datasets in both sets of experiments,

ll other detectors are found to be significantly worse than the

OHMM. 
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Table 2 

Identification accuracy rates. Bold indicates systems that are not significantly worse than the best system. 

Mobile+ includes mobile sensor features in addition to time intervals. 

Manhattan Manhattan (Scaled) SVM (One-class) HMM POHMM 

Password 0.510 (0.307) 0.662 (0.282) 0.465 (0.293) 0.467 (0.295) 0.789 (0.209) 

Keypad 0.623 (0.256) 0.713 (0.200) 0.500 (0.293) 0.478 (0.287) 0.748 (0.151) 

Mobile 0.290 (0.230) 0.528 (0.237) 0.267 (0.229) 0.303 (0.265) 0.607 (0.189) 

Mobile + 0.647 (0.250) 0.947 (0.104) 0.857 (0.232) 0.937 (0.085) 0.971 (0.039) 

Fable 0.492 (0.332) 0.613 (0.314) 0.571 (0.235) 0.392 (0.355) 0.887 (0.175) 

Essay 0.730 (0.320) 0.839 (0.242) 0.342 (0.302) 0.303 (0.351) 0.909 (0.128) 

Table 3 

User-dependent EER. Bold indicates systems that are not significantly worse than the best system. Mobile+ 

includes mobile sensor features in addition to time intervals. 

Manhattan Manhattan (scaled) SVM (one-class) HMM POHMM 

Password 0.088 (0.069) 0.062 (0.064) 0.112 (0.088) 0.126 (0.099) 0.042 (0.051) 

Keypad 0.092 (0.069) 0.053 (0.030) 0.110 (0.054) 0.099 (0.050) 0.053 (0.025) 

Mobile 0.194 (0.101) 0.097 (0.057) 0.170 (0.092) 0.168 (0.085) 0.090 (0.054) 

Mobile + 0.084 (0.061) 0.009 (0.027) 0.014 (0.033) 0.013 (0.021) 0.006 (0.014) 

Fable 0.085 (0.091) 0.049 (0.060) 0.099 (0.106) 0.105 (0.092) 0.031 (0.077) 

Essay 0.061 (0.092) 0.028 (0.052) 0.098 (0.091) 0.145 (0.107) 0.020 (0.046) 

Fig. 6. Keystroke ROC curves. Bands show the 95% confidence intervals. 
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5.3. Continuous verification 

Continuous verification has been recognized as a problem in

biometrics whereby a resource is continuously monitored to de-

tect the presence of a genuine user or impostor [40] . It is natural

to consider the continuous verification of keystroke dynamics, and

most behavioral biometrics, since events are continuously gener-

ated as the user interacts with the system. In this case, it is de-

sirable to detect an impostor within as few keystrokes as possi-

ble. This differs from the static verification scenario in the previous

section in which verification performance is evaluated over an en-

tire session. Instead, continuous verification requires a verification

decision to be made upon each new keystroke [23] . 

Continuous verification is enforced through a penalty function

in which each new keystroke incurs a non-negative penalty within

a sliding window. The penalty at any given time can be thought

of as the inverse of trust. As behavior becomes more consistent

with the model, the cumulative penalty within the window can

decrease, and as it becomes more dissimilar, the penalty increases.

The user is rejected if the cumulative penalty within the sliding

window exceeds a threshold. The threshold is chosen for each sam-

ple such that the genuine user is never rejected, analogous to a

0% FRR in static verification. An alternative to the penalty func-

tion is the penalty-and-reward function in which keystrokes in-

cur either a penalty or a reward (i.e., a negative penalty) [41] . In

this work, the sliding window replaces the reward since penal-
ies outside the window do not contribute towards the cumulative

enalty. 

The penalty of each new event is determined as follows.

he marginal probability of each new event, given the preceding

vents, is obtained from the forward lattice, α, given by 

 ( x n +1 | x 

n 
1 ) = P 

(
x 

n +1 
1 

)
− P ( x 

n 
1 ) (43)

hen a new event is observed, the likelihood is obtained un-

er every model in a population of U models. The likelihoods are

anked, with the highest model given a rank of 0, and the lowest

 rank of U − 1 . The rank of the claimed user’s model is the in-

urred penalty. Thus, if a single event is correctly matched to the

enuine user’s model, a penalty of 0 is incurred; if it scores the

econd highest likelihood, a penalty of 1 is incurred, etc. The rank

enalty is added to the cumulative penalty in the sliding window,

hile penalties outside the window are discarded. A window of

ength 25 is used in this work. 

Continuous verification performance is reported as the number

f events (up to the sample length) that can occur before an im-

ostor is detected. This is determined by increasing the penalty

hreshold until the genuine user is never rejected by the system.

ince the genuine user’s penalty is always below the threshold,

his is the maximum number of events that an impostor can ex-

cute before being rejected by the system while the genuine user

s never rejected. 
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Fig. 7. Continuous verification example. Bands show the 95% confidence interval. In 

this example, impostors are detected after an average of 81 keystrokes. 

Table 4 

Continuous verification average maximum rejec- 

tion time: the number of events that occur be- 

fore an impostor is detected given the genuine 

user is not falsely rejected. 

HMM POHMM 

Password 5.64 (2.04) 3.42 (2.04) 

Keypad 4.54 (2.09) 3.45 (1.73) 

Mobile 5.63 (2.18) 4.29 (2.02) 

Mobile + 0.15 (0.65) 0.12 (0.57) 

Fable 33.63 (15.47) 20.81 (9.07) 

Essay 129.36 (95.45) 55.18 (68.31) 
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An example of the penalty function for genuine and impostor

sers is shown in Fig. 7 . The decision threshold is set to the maxi-

um penalty incurred by the genuine user so that a false rejection

oes not occur. The average penalty for impostor users with 95%

onfidence interval is shown. In this example, the impostor penal-

ies exceed the decision threshold after 81 keystrokes on average.

ote that this is different than the average imposter penalty, which

xceeds the threshold after 23 keystrokes. 

For each dataset, the average maximum rejection time (AMRT)

s determined, shown in Table 4 . The maximum rejection time

MRT) is the maximum number of keystrokes needed to detect an

mpostor without rejecting the genuine user, or the time to correct

eject (TCR) with perfect usability [40] . The MRT is determined for

ach combination of impostor query sample and user model in the

ataset to get the AMRT. The POHMM has a lower AMRT than the

MM for every dataset, and less than half that of the HMM for

ree-text input. 

. Discussion 

There have been several generalizations of the standard HMM

o deal with hidden states that are partially observable in some

ay. These models are referred to as partly-HMM [42] , partially-

MM [43] , and context-HMM [44] . 

The partly-HMM is a second order model in which the first

tate is hidden and the second state is observable [42] . In the

artly-HMM, both the hidden state and emission at time t n de-

end on the observation at time t n −1 . The partly-HMM can be

pplied to problems that have a transient underlying process,

uch as gesture and speech recognition, as opposed to a piece-

ise stationary process that the HMM assumes [45] . Parame-
er estimation is performed by the EM algorithm, similar to the

MM. 

Partially observable states can also come in the form of partial

nd uncertain ground truth regarding the hidden state at each time

tep. The partially-HMM addresses this scenario, in which an un-

ertain hidden state label may be observed at each time step [43] .

he probability of observing the uncertain label and the probabil-

ty of the label being correct, were the true hidden state known,

re controlled by parameters p obs and p true , respectively. Thus, the

robability of observing a correct label is p obs × p true . This model

s motivated by language modeling applications in which manu-

lly labeling data is expensive and time consuming. Similar to the

MM, the EM algorithm can be used for estimating the parameters

f the partially-HMM [43] . 

Past observations can also provide context for the emission and

idden state transition probabilities in an HMM. Forchhammer and

issanen [44] proposed the context-HMM, in which the emission

nd hidden state probabilities at time t n +1 are conditioned on con-

exts r n and s n , respectively. Each context is given by a function

f the previous observations up to time t n . The context-HMM has

nformation theoretic motivations, with applications such as image

ompression [46] . Used in this way, the neighboring pixels in an

mage can provide context for the emission and transition proba-

ilities. 

There are two scenarios in which previous models of partial ob-

ervability fall short. The first is when there is missing data dur-

ng parameter estimation, such missing context, and the second is

hen there is missing or novel data during likelihood calculation.

 possible solution to these problems uses the explicit marginal

mission and transition distributions, where, e.g., the context is

arginalized out. While none of the above models possess this

roperty, the POHMM, described in Section 3 , has explicit marginal

istributions that are used when missing or novel data are en-

ountered. Additionally, parameter smoothing uses the marginal

istributions to regularize the model and improve parameter

stimates. 

The POHMM is different from the partly-HMM [42] , being a first

rder model, and different from the partially-HMM [43] , since it

oesn’t assume a partial labeling. The POHMM is most similar to

he context-HMM [44] in the sense that emission and transition

robabilities are conditioned on some observed values. Despite

his, there are several important differences between the POHMM

nd context-HMM: 

1. The context is not a function of the previous emissions; in-

stead it is a separate observed value (called an event type in

this work). 

2. The context for hidden state and emission is the same, i.e., s n =
r n . 

3. The emission at time n + 1 is conditioned on a context ob-

served at time n + 1 instead of time n . 

4. An additional context s n +1 is available at time n + 1 , upon

which the hidden state is also conditioned. 

The first difference enables the POHMM to characterize sys-

em behavior that depends on an independent Markov chain which

manates from a completely separate process. Such a scenario

s encountered in keystroke dynamics, whereby typing behavior

epends on the text that is being typed, but the text itself is

ot considered part of the keystroke dynamics. This distinction is

ot made in the context-HMM, as the context is based on the

reviously-observed emissions. Additionally, the context-HMM, as 

riginal described, contains only discrete distributions and lacks

xplicit marginal distributions; therefore it is unable to account for

issing or novel data during likelihood calculation, as would be

eeded in free-text keystroke dynamics. 
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7. Conclusions 

This work introduced the POHMM, an extension of the HMM

in which the hidden states are partially observable through an in-

dependent Markov chain. Computational complexities of POHMM

parameter estimation and likelihood calculation are comparable to

that of the HMM, which are linear in the number of observations.

POHMM parameter estimation also inherits the desirable proper-

ties of expectation maximization, as a modified Baum–Welch al-

gorithm is employed. A case study of the POHMM applied to

keystroke dynamics demonstrates superiority over leading alterna-

tive models on a variety of tasks, including identification, verifica-

tion, and continuous verification. 

Since we assumed the event type is given, we considered only

the conditional likelihood P 
(
x N 1 | �N 

1 

)
. Consideration of the joint

likelihood P 
(
x N 1 , �

N 
1 

)
remains an item for future work. Applied to

keystroke dynamics, the joint likelihood P 
(
x N 1 , �

N 
1 

)
would reflect

both the keystroke timings and keys typed enabling the model to

capture both typing behavior and text generation. Alternatively, the

consideration of P 
(
�N 

1 | x N 1 

)
would enable the POHMM to recover

the key names from keystroke timings, also an item for future

work. 

Appendix A. Summary of POHMM parameters and variables 

Table A1 

Summary of POHMM parameters and variables. 

Parameter Description 

ψ , ω Event types 

i, j Hidden states 

x N 1 Observation sequence; x n is the feature vector observed at 

time t n 
�N 

1 Event type sequence; �n is the event type observed at 

time t n 
z N 1 Sequence of hidden (unobserved) states; z n is the hidden 

state at time t n 
M Number of hidden states 

m Number of unique event types in �N 
1 

a [ i, j | ψ , ω] Probability of transitioning from state i to j , given event 

types ψ while in state i and ω in state j 

π [ j | ω] Probability of state j at time t 1 , given event type ω 

�[ j | ω] Stationary probability of state j , given event type ω 

b [ j | ω] Emission distribution parameters of state j , given event 

type ω 

γ n [ j | ω] Probability of state j at time t n , given event type ω 

ξ n [ i, j | ψ , ω] Probability of transitioning from state i at time t n to state j 

at time t n +1 , given event types ψ and ω at times t n and 

t n +1 , respectively 

Appendix B. Proof of convergence 

The proof of convergence follows that of Levinson et al.

[47] which is based on Baum et al. [48] . Only the parts relevant to

the POHMM are described. Let Q 

(
θ, ˙ θ

)
be Baum’s auxiliary func-

tion, 

Q 

(
θ, ˙ θ

)
= 

∑ 

z N 
1 
∈ Z 

ln u z N 
1 

ln v z N 
1 

(B.1)

where u 
z N 

1 
= P 

(
x N 1 , z 

N 
1 | �N 

1 , θ
)
, v Z = P 

(
x N 1 , z 

N 
1 | �N 

1 , 
˙ θ
)
, and Z is the set

of all state sequences of length N . By Theorem 2.1 in Baum’s proof

[48] , maximizing Q 

(
θ, ˙ θ

)
leads to increased likelihood, unless at a

critical point, in which case there is no change. 

Using the POHMM parameters ˙ θ, ln v 
z N 

1 
can be written as 

ln v z N 
1 

= ln P 
(
z N 1 , x 

N 
1 | �N 

1 , 
˙ θ
)

= ln ˙ π [ z 1 | �1 ] + 

N−1 ∑ 

n =1 

ln 

˙ a [ z n , z n +1 | �n , �n +1 ] + (B.2)

N ∑ 

n =1 

ln f 
(
x n ; ˙ b [ z n | �n ] 

)
(B.3)

nd similarly for ln u 
z N 

1 
. Then, 

 

(
θ, ˙ θ

)
= 

∑ 

z N 
1 
∈ Z 

{ 

ln ˙ π [ z 1 | �1 ] + 

N−1 ∑ 

n =1 

ln 

˙ a [ z n , z n +1 | �n , �n +1 ] 

+ 

N ∑ 

n =1 

ln f 
(
x n ; ˙ b [ z n | �n ] 

)} 

P 
(
z N 1 | x 

N 
1 , �

N 
1 , θ

)
(B.4)

nd regrouping terms, 

 

(
θ, ˙ θ

)
= 

∑ 

z 1 ∈ Z 
ln ˙ π [ z 1 | �1 ] P 

(
z 1 | x 

N 
1 , �

N 
1 , θ

)

+ 

∑ 

z n +1 
n ∈ Z 

N−1 ∑ 

n =1 

ln 

˙ a [ z n , z n +1 | �n , �n +1 ] P 
(
z n +1 

n | x 

N 
1 , �

N 
1 , θ

)

+ 

∑ 

z n ∈ Z 

N ∑ 

n =1 

ln f 
(
x n ; ˙ b [ z n | �n ] 

)
P 
(
z n | x 

N 
1 , �

N 
1 , θ

)
. (B.5)

inally, substituting in the model parameters and variables gives, 

 

(
θ, ˙ θ

)
= 

M ∑ 

j=1 

γ1 [ j| �1 ] ln ˙ π [ j| �1 ] 

+ 

M ∑ 

j=1 

M ∑ 

i =1 

N−1 ∑ 

n =1 

ξn [ i, j| �n , �n +1 ] ln 

˙ a [ i, j| �n | �n +1 ] 

+ 

M ∑ 

j=1 

N ∑ 

n =1 

γn [ j| �n ] ln f 
(
x n ; ˙ b [ z n | �n ] 

)
(B.6)

The POHMM re-estimation formulae ( Eqs. (12) , (14), (15) ) follow

irectly from the optimization of each term in Eq. (B.6) . Even when

arameter smoothing is used, convergence is still guaranteed. This

s due to the diminishing effect of the marginal for each parameter,

im N→∞ 

˜ θ = θ, where ˜ θ are the smoothed parameters. 
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